top of page
Image by Ecliptic Graphic
Image by Maxim Berg

2024

41. A Wearable EEG Band Based on Spray-Coated Textile Bioelectrodes, IEEE Sensors, 2024, IEEE SENSORS, Kobe, Japan, 1-4, DOI: 10.1109/SENSORS60989.2024.10784522.

40. Carbon nanomaterials-Based Inks and Electrodes Using Chitin Nanocrystals, ACS Sustainable Chemistry & Engineering, 2024, 12 (43), 15980-15990. DOI: 10.1021/acssuschemeng.4c05253

39. PNIPAM/PEDOT:PSS Hydrogels for Multifunctional Organic Electrochemical Transistors, Adv. Funct. Mater. 2024, 34, 2403708. DOI: 10.1002/adfm.202403708

38. 3D printed PEDOT: PSS-based conducting and patternable eutectogel electrodes for machine learning on textiles, Biomaterials, 2024, 310, 122624. DOI: 10.1016/j.biomaterials.2024.122624.

37. Light-Based 3D Multi-Material Printing of Micro-Structured Bio-Shaped, Conducting and Dry Adhesive Electrodes for Bioelectronics. Adv. Sci. 2024, 11, 2306424. DOI: 10.1002/advs.202306424

36.  High Density Body Surface Potential Mapping with Conducting Polymer-Eutectogel Electrode Arrays for ECG imaging. Adv. Sci. 2024, 11, 2301176, DOI: 10.1002/advs.202301176

35. Engineering Proteins for PEDOT Dispersions: A New Horizon for Highly Mixed Ionic-Electronic Biocompatible Conducting Materials. Small 2024, 20, 2307536. DOI: 10.1002/smll.202307536

34. Innovative Strategy for Developing PEDOT Composite Scaffold for Reversible Oxygen Reduction Reaction, J. Phys. Chem. Lett., 2024 15 (18), 4851-4857, DOI: 10.1021/acs.jpclett.4c00482

 

33. Electrogelation of PEDOT:PSS and its copolymer for bioelectronics, J. Mater. Chem. C, 2024,12, 14944-14954, DOI: 10.1039/d4tc02908a

 

32. Facile fabrication of dual-conductivity, humidity-responsive single-layer membranes: towards advanced applications in sensing, actuation, and energy generation, J. Mater. Chem. C, 2024,12, 11594-11602. DOI: 10.1039/d4tc02195a

 

31. Dry ionic conductive elastomers based on polymeric deep eutectic solvents for bioelectronics, J. Mater. Chem. C, 2024, 12, 11265-11284. DOI: 10.1039/D4TC01732C

Interfaz de usuario
Órgano cardíaco transparente
Image by Solen Feyissa

2020

12. Chapter 10: Conductive Polymers Building 3D Scaffolds for Tissue Engineering. The Royal Society of Chemistry, 2020, ch. 10, pp. 383-414. DOI: 10.1039/9781788019743-00383

11. Toward spontaneous neuronal differentiation of SH-SY5Y cells using novel three-dimensional electropolymerized conductive scaffolds, ACS Appl. Mater. Interfaces, 2020, 12 (51), 57330-57342. DOI: 10.1021/acsami.0c16645

10. Elastic and thermoreversible iongels by supramolecular PVA/phenol interactions, Macromol. Biosci.2020,   2020, 20, 2000119. DOI: 10.1002/mabi.202000119

9. Effervescence-assisted spiral hollow-fibre liquid-phase microextraction of trihalomethanes, halonitromethanes, haloacetonitriles, and haloketones in drinking water, J. Hazard. Mater., 2020, 397, 122790. DOI: 10.1016/j.jhazmat.2020.122790

8. Water soluble cationic poly (3, 4‐ethylenedioxythiophene) PEDOT‐N as a versatile conducting polymer for bioelectronics, Adv. Electron. Mater., 2020, 6, 2000510. DOI:10.1002/aelm.202000510

7. Toward two-photon absorbing dyes with unusually potentiated nonlinear fluorescence response, J.A.C.S.2020, 142 (35), 14854-14858. DOI: 10.1021/jacs.0c07377

6. Graphene, other carbon nanomaterials and the immune system: toward nanoimmunity-by-design, J. Phys. Mater., 2020, 3 034009. DOI: 10.1088/2515-7639/ab9317

5. Tailored methodology based on vapor phase polymerization to manufacture PEDOT/CNT scaffolds for tissue engineering, ACS Biomater. Sci. Eng. 2020, 6, 2, 1269–1278 DOI: 10.1021/acsbiomaterials.9b01316

Institute of Microelectronics of Sevilla (IMSE-CNM-CSIC)

123-456-7890

© 2035 by The Thomas Hill. Powered and secured by Wix

bottom of page